Содержание дисциплины

8 класс (34 часа)

1. Основы алгоритмизации – 9 часов

Учебные исполнители Робот, Удвоитель и др. как примеры формальных исполнителей. Понятие алгоритма как формального описания последовательности действий исполнителя при заданных начальных данных. Свойства алгоритмов. Способы записи алгоритмов. Алгоритмический язык — формальный язык для записи алгоритмов. Программа — запись алгоритма на алгоритмическом языке. Непосредственное и программное управление исполнителем. Линейные программы. Алгоритмические конструкции, связанные с проверкой условий: ветвление и повторение. Понятие простой величины. Типы величин: целые, вещественные, символьные, строковые, логические. Переменные и константы. Алгоритм работы с величинами — план целенаправленных действий по проведению вычислений при заданных начальных данных с использованием промежуточных результатов.

Учащиеся должны знать:

- что такое алгоритм управления; какова роль алгоритма в системах управления;
- в чем состоят основные свойства алгоритма;
- способы записи алгоритмов: блок-схемы, учебный алгоритмический язык;
- основные алгоритмические конструкции: следование, ветвление, цикл; структуры алгоритмов;
 - основные виды и типы величин;
 - Учащиеся должны уметь:
- пользоваться языком блок-схем, понимать описания алгоритмов на учебном алгоритмическом языке;
 - выполнить трассировку алгоритма для известного исполнителя;
- составлять линейные, ветвящиеся и циклические алгоритмы управления одним из учебных исполнителей;

2. Начала программирования – 12 часов

Язык программирования. Основные правила языка программирования Паскаль: структура программы; правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл). Решение задач по разработке и выполнению программ в среде программирования

Учащиеся должны знать:

- назначение языков программирования и систем программирования; что такое трансляция;
- правила оформления программы и представления данных и операторов на Паскале;
 - последовательность выполнения программы в системе программирования. Учашиеся должны уметь:
- работать с готовой программой на одном из языков программирования высокого уровня;
 - составлять несложные линейные, ветвящиеся и циклические программы;
 - составлять несложные программы обработки одномерных массивов;
 - отлаживать и исполнять программы в системе программирования.

3. Математические основы информатики – 13 часов

Понятие о непозиционных и позиционных системах счисления. Знакомство с двоичной, восьмеричной и шестнадцатеричной системами счисления, запись в них целых десятичных чисел от 0 до 1024. Перевод небольших целых чисел из двоичной, восьмеричной и шестнадцатеричной системы счисления в десятичную. Двоичная арифметика. Логика высказываний (элементы алгебры логики). Логические значения, операции (логическое отрицание, логическое умножение, логическое сложение), выражения, таблицы истинности.

Учащиеся должны знать:

- выявлять различие в унарных, позиционных и непозиционных системах счисления:
- выявлять общее и отличия в разных позиционных системах счисления;
- анализировать логическую структуру высказываний.

Учащиеся должны уметь:

- переводить небольшие (от 0 до 1024) целые числа из десятичной системы счисления в двоичную (восьмеричную, шестнадцатеричную) и обратно;
- выполнять операции сложения и умножения над небольшими двоичными числами;
- записывать вещественные числа в естественной и нормальной форме;
- строить таблицы истинности для логических выражений; вычислять истинностное значение логического выражения.

Глава 2 Алгоритмизация и программирование	9

Тематическое планирование

№ урока	Содержание учебного материала	Кол-во часов
1.	ПТБ. Введение	1
2.	§ 2.1. Алгоритм и исполнители. Составление алгоритмов	1
3.	§ 2.2. Способы записи алгоритмов. Блок-схема. § 2.3.	1
	Величины. Выражения. Решение задач	
4.	§ 2.3. Команда присваивания. Табличные величины.	1
	Арифметические операции. Решение задач.	
5.	Самостоятельная работа	1
6.	§ 2.4. Основные алгоритмические конструкции. Следование	1
7.	§ 2.4. Основные алгоритмические конструкции. Ветвление	1
8.	§ 2.4. Основные алгоритмические конструкции. Повторение	1
9.	Решение задач	1
	Глава 3. Начала программирования	12
10.	§ 3.1. Общие сведения о языке программирования Паскаль	1
11.	§ 3.2. Организация ввода и вывода данных	1
12.	§ 3.3. Программирование линейных алгоритмов	1
13.	Составление линейных программ	1
14.	Лабораторная работа №1	1
15.	§ 3.4. Программирование разветвляющихся алгоритмов	1
16.	Составление программ с ветвлением	1
17.	Лабораторная работа №2	1
18.	§ 3.5. Программирование циклических алгоритмов	1
19.	Составление циклических программ	1
20.	Составление циклических программ	1
21.	Лабораторная работа №3	1
	Глава 1. Математические основы информатики	13
23	§ 1.1. Системы счисления. Перевод чисел.	1
24	§ 1.1. Системы счисления. Решение упражнений. С/р	1
25	§ 1.1. Двоичная арифметика. Решение примеров	1
26	§ 1.1. Двоичная арифметика. Решение примеров	1
27	§ 1.2. Представление чисел в компьютере. Решение	1
	упражнений	
28	Контрольная работа №2	1
29	§ 1.3. Элементы алгебры логики	1
30	§ 1.3. Элементы алгебры логики. Построение таблиц	1
	истинности	
31	§ 1.3. Свойства логических операций. Решение логических	1
	задач	
32	§ 1.3. Логические элементы. Решение задач.	1
33	Лабораторная работа №4	1
34	Контрольная работа №4	1

Планирование разработано на основе УМК Л.Л. Босова и др.

Учащиеся должны знать/понимать:

- понимать смысл понятия «алгоритм» и широту сферы его применения; анализировать предлагаемые последовательности команд на предмет наличия у них таких свойств алгоритма как дискретность, детерминированность, понятность, результативность, массовость;
- оперировать алгоритмическими конструкциями «следование», «ветвление», «цикл» (подбирать алгоритмическую конструкцию, соответствующую той или иной ситуации; переходить от записи алгоритмической конструкции на алгоритмическом языке к блок-схеме и обратно);
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя» и др.; понимать ограничения, накладываемые средой исполнителя и системой команд, на круг задач, решаемых исполнителем;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- составлять линейные алгоритмы, число команд в которых не превышает заданное;
- ученик научится исполнять записанный на естественном языке алгоритм, обрабатывающий цепочки символов.
- исполнять линейные алгоритмы, записанные на языке программирования.
- исполнять алгоритмы с ветвлениями, записанные на языке программирования;
- понимать правила записи и выполнения алгоритмов, содержащих цикл с параметром или цикл с условием продолжения работы;
- определять значения переменных после исполнения простейших циклических алгоритмов, записанных на языке программирования;
- разрабатывать и записывать на языке программирования короткие алгоритмы, содержащие базовые алгоритмические конструкции.
- записывать в двоичной системе целые числа от 0 до 256;
- составлять логические выражения с операциями И, ИЛИ, НЕ; определять значение логического выражения; строить таблицы истинности;

Учащиеся должны уметь:

- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;
- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- разрабатывать и записывать на языке программирования эффективные алгоритмы, содержащие базовые алгоритмические конструкции.
- переводить небольшие десятичные числа из восьмеричной и шестнадцатеричной системы счисления в десятичную систему счисления;
- научиться решать логические задачи с использованием таблиц истинности;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- создания простейших моделей объектов и процессов в виде изображений и чертежей, динамических (электронных) таблиц, программ (в том числе в форме блок-схем);
- проведения компьютерных экспериментов с использованием готовых моделей;
- создания информационных объектов, в том числе для оформления результатов учебной работы;
- организации индивидуального информационного пространства, создания личных коллекций информационных объектов.

Перечень учебно-методического обеспечения

І. Учебно-методический комплект

- 1. Босова Л. Л. Босова А. Ю. Информатика: учебник для 8 класса (ФГОС). М.: БИНОМ, 2014.
- 2. Босова Л. Л. Босова А. Ю. Информатика: рабочая тетрадь для 8 класса (ФГОС). М.: БИНОМ, 2014.
- 3. Босова Л. Л., Босова А. Ю. Информатика. Программа для основной школы: 5–6 классы. 7-9 классы. (ФГОС). М.: БИНОМ, 2013.
- 4. Босова Л.Л., Босова А.Ю. Информатика. 7–9 классы : методическое пособие. М.: БИНОМ. Лаборатория знаний, 2013.
- 5. Босова Л.Л., Босова А.Ю. Электронное приложение к учебнику «Информатика. 8 класс»
- 6. Материалы авторской мастерской Босовой Л.Л. (metodist.lbz.ru/)

II. Технические средства обучения

- 1. Рабочее место ученика (системный блок, монитор, клавиатура, мышь).
- 2. Рабочее место учителя (системный блок, монитор, клавиатура, мышь).
- 3. Колонки (рабочее место учителя).
- 4. Микрофон (рабочее место учителя).
- 5. Проектор.
- 6. Цифровая фотокамера.
- 7. Цифровая видеокамера.

III. Программные средства

- 1. Операционная система Windows 7.
- 2. Файловый менеджер Проводник (входит в состав операционной системы).
- 3. Растровый редактор Paint (входит в состав операционной системы).
- 4. Простой текстовый редактор Блокнот (входит в состав операционной системы).
- 5. Почтовый клиент Outlook Express (входит в состав операционной системы).
- 6. Браузер Internet Explorer (входит в состав операционной системы).
- 7. Офисное приложение Microsoft Office 2007, включающее текстовый процессор Microsoft Word со встроенным векторным графическим редактором, программу разработки презентаций Microsoft PowerPoint, электронные таблицы Microsoft Excel, систему управления базами данных Microsoft Access.
- 8. Система программирования TurboPascal.

Список литературы

Для учителя:

- 1. Босова Л.Л., А.Ю. Босова Информатика: Учебник для 8 класса. М.: БИНОМ. Лаборатория знаний, 2016 г.
- 2. Босова Л.Л. Уроки информатики в 7-9 классах. Методическое пособие для учителей. М.: БИНОМ, 2011.
- 1. Босова Л.Л., Босова А.Ю. Информатика. 7–9 классы : методическое пособие. М.: БИНОМ. Лаборатория знаний, 2015.

Для учащихся:

1. Босова Л.Л., А.Ю. Босова Информатика: Учебник для 8 класса. — М.: БИНОМ. Лаборатория знаний, 2016 г.